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A critical review of single-cell RNA sequencing-based genetic profiling for 

human embryos 

Motivation 

Embryonic development is a highly complex process that requires precise spatial and 

temporal regulations. Through the preimplantation stages, single-cell zygotes 

undergo drastic gene expression changes to form multicellular blastocysts. Proper 

blastocyst formation is crucial to the success of fetus development, as poor blastocyst 

quality often lead to failure in post-in vitro fertilization (IVF) implantation1. The process 

of blastocyst outgrowth to derive human embryonic stem cells (hESCs) also requires 

unique transition at the transcriptome level2. The ability of hESCs to differentiate into 

different cell lineages enables them to serve as promising tools for organ 

reconstruction and tissue engineering3. Thus, characterizing the genetic signatures of 

hESCs and cells across different preimplantation stages is not only critical to better 

understand the embryonic development but also impactful for the current IVF 

processes and regenerative medicine as a whole. 

Genetic profiling was first performed in hESCs as an attempt to identify groups of 

genes responsible for proliferation and pluripotency4. Although these studies provide 

valuable insights which later led to the revolutionizing discovery of induced pluripotent 

stem cells5, cultured hESCs for some time were assumed to be equivalent to their 

inner cell mass counterpart. In 2009, studies by Reijo Pera et al. indicated that hESCs 

and inner cell mass form two distinct clusters under global gene expression analysis1. 

The group further proposed that hESCs may be at a later developmental time point 

compared to the inner cell mass cells, or hESCs may simply be a distinct population 

that has no in vivo correspondence. This finding motivated further studies to 

investigate and better understand the temporal gene expression changes across 

different preimplantation stages.  

Previous global genetic profiling methods include DNA microarray, expressed 

sequenced tag enumeration, massively parallel signature sequencing and serial 

analysis of gene expression6. These techniques, however, require a large sample 

size for sufficient mRNA collection, which is difficult for human embryo studies. 

Moreover, cells are inherently heterogeneous. Pulling together transcripts from 

individual cells in the embryo may mask the intrinsic heterogeneity relevant to the 

transcriptome signatures of each stage. These critical bottlenecks call for a profiling 

method that can detect specific gene expressions at single-cell sensitivity. With the 

advance in technology, single-cell RNA sequencing (RNA-seq) greatly facilitated a 

more accurate genetic profiling for human preimplantation development. This review 

will focus on the techniques and findings by Xue et al.7 and Yan et al.8. 

Human Preimplantation Development and Previous Genetic Profiling Findings 

Preimplantaion development is the process by which an oocyte becomes fertilized 

and develops into a blastocyst before attaching onto the uterine wall. When sperm 

first enters a mature oocyte, the nuclei from the sperm and the egg remain separated, 

a stage known as the pronucleus stage. Subsequently, the nuclear membrane 

dissolves to allow mixing of both paternal and maternal chromosomes, giving rise to a 

diploid zygote9. The zygote undergoes three cleavages to make an 8-cell embryo. 
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During the cleavage process, the embryo volume remains relatively constant, 

suggesting a low demand for cell growth and a high demand for DNA synthesis10. 

Followed by cleavages, the embryo undergoes compaction to form the morula. 

Individual cells in the 2-cell stage to morula are referred to as blastomeres. Compact 

morula undergoes first cell-fate decision to give rise to the trophectoderm and the 

inner cell mass in blastocyst. Cells from the inner cell mass are considered pluripotent, 

as they have the ability to differentiate into any cell type in a functional organism. In 

contrast, trophectodermal cells are multipotent because it only forms the placental 

tissue for fetal support. Human embryonic stem cells are derived from the inner cell 

mass and can be cultured in vitro without losing their pluripotency11.  

Previous genomic analyses revealed that the transcriptome changes during human 

preimplantation development are highly dynamic. At the onset of first cleavage, 

maternal mRNAs degrade monotonically. In contrast, the zygotic genes are activated 

in a wave-like manner, and the activation is most prominent between the 4-cell to 

8-cell stage transition12. For instance, multiple transcription factors and translation 

initiators such as GTF2A1, PTMA, RUNX2, YY1, EIF1AX and EIF4A3 are highly 

expressed. Genes associated with morula compaction and blastocyst formation are 

subsequently upregulated at the corresponding stages. Some examples are 

pluripotency genes NANOG and SOX2, proliferation genes SERTAD1, H2AFZ and 

JARID1B and differentiation gene EOMES. Figure 1 summarizes the preimplantation 

process and the corresponding transcriptome dynamics. 

 

Figure 1. Human preimplantation development. Individual cells in the developing 

embryo are termed blastomeres. The blastocyst consists of two cell types: the pluripotent 

inner cell mass (ICM) which develops into the fetus and the trophectoderm (TE) which gives 

rise to the placenta. The lower panel depicts the major gene expression changes across 

different stages. Maternal mRNA gradually degrade from the onset of embryo development, 

while zygotic genes experience waves of activation at the 4-cell to 8-cell transition followed 

by morula compaction and blastocyst cavitation. Figure modified from ref. 12. 



BIOC 218 – WINTER 2014  Eva Huang 

3 

 

Single-cell RNA Sequencing Technique 

Standard microarrays require micrograms of input mRNA for transcriptome analysis. 

However, single cell contains mRNA on the order of 0.1 picogram, which is 107-fold 

lower than microarray analysis threshold. Due to this low abundance in mRNA, 

amplification is crucial for single-cell RNA sequencing13. First, complimentary DNAs 

(cDNAs) are made from whole-cell lysate via reverse transcription. To distinguish 

mRNAs transcripts from other functional RNAs, polyadenylated RNA strands are 

reverse transcribed with bias using oligo(dT) primers. The resulting cDNAs are further 

capped with poly(A) tail at the 3’ end, followed by multiple rounds of amplification. 

Both polymerase chain reaction (PCR)-based and in vitro transcription (IVT)-based 

amplification are commonly used. PCR amplifies cDNAs exponentially to shorten the 

waiting time. However, primer dimers and nonspecific byproducts can accumulate, 

reducing the amplification fidelity. IVT, on the other hand, is more stringent and 

produces fewer byproducts. The drawback is that IVT is time consuming as it 

amplifies cDNA linearly, and it is limited to generate cDNAs less than 1kb in length. 

Once amplified, the cDNA library can be used for microarray analysis to quantify 

known gene expressions or profiled using any next-generation sequencing 

techniques14. Both Xue et al. and Yan et al. constructed their cDNA libraries using 

PCR amplification and obtained transcriptome data by Illumina-based sequencing. 

 

Figure 2. Flow chart of the single-cell RNA sequencing process. Red and blue 

captions indicate method choices in Xue et al. and Yan et al.’s studies, respectively. Reads 

per kilobase per million reads (RPKM) reflects mRNA abundance and is often used to gate 

analysis threshold. Q20 corresponds to the quality control factor assigned by Yan et al.8 

Burrows-Wheeler Aligner (BWA) tool was used by both groups for sequence alignment and 

mapping to the human reference genome. Both groups clustered and visualized their data 

using unsupervised hierarchical approach and principal-component analysis. Xue et al. 

then focuses on single-nucleotide polymorphism studies and hub gene identification, while 

Yan et al. further analyzed the transcriptome to identify novel transcripts. 

Single-cell RNA Sequencing Data Analysis 

Subsequent to cDNA library construction, amplification and sequencing, raw data 

need to be trimmed, aligned and mapped against reference genome, and quantified 
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for gene expression. These processes are often facilitated by packages such as 

FASTX and Trimmomatic for trimming, BWA, SOAP and NovoAlign for alignment, and 

BWA, Cufflinks, casper and EdgeR for quantification15. 

A. Data Visualization: Gene Clustering 

Hundreds to thousands of genes can be expressed in a single cell at a given time. 

To gain insights from genomic profiling, individual genes are often clustered into 

groups to reveal expression patterns. Most clustering algorithms utilize one of the 

7 models: connectivity, centroid, distribution, density, subspace, group and 

graph-based16. This review will focus on one prominent algorithm, the 

connectivity-based hierarchical clustering, for embryonic gene expression 

analysis. Prior to applying clustering algorithms, gene expression data are first 

transformed such that each gene is represented by a vector and each vector 

component corresponds to the –log of its expression in a particular experiment17. 

 oocyte pronucleus zygote 2-cell 4-cell 8-cell morula blastocyst 

Gene A [ 0.2       0.5       0.3      0.7      0.3     0.15     0.9      0.8  ] 

Gene A’ [ 0.70     0.30      0.52     0.15     0.52     0.82     0.05     0.10  ] 

The diagram above depicts a hypothetical gene expression profile (A) at various 

stages through preimplantation development and its transformed vector (A’). For a 

data set with n number of genes and m number of cells, the input matrix size will 

be n x m for clustering analysis. 

Hierarchical Clustering 

Hierarchical clustering is a proximity-based agglomerative method. The distances 

between each pair of genes are first calculated; then the genes with shortest 

distance are grouped to form clusters. Gene clusters are subsequently treated as 

a single unit for distance calculation, and the grouping process iterates until all 

genes are agglomerated under a single cluster. Two ways to determine the 

pairwise distance are the Minkowski measurements (Euclidean, Manhattan, 

Chebyshev) which detect the spatial proximity between two genes, and correlation 

distances (Pearson, Spearman, Kendall) which measure the similarity in gene 

expression without regard to the absolute scale. Specifically, Euclidean distance 

and Pearson correlation are commonly calculated, and their formulae are as 

follows. A gene pair is represented by indices i and j, and the corresponding 

transformed gene expression is denoted by G. 

Euclidean: 𝐷𝑖𝑗 =  ∑(𝐺𝑖𝑘 − 𝐺𝑗𝑘)2

𝑚

𝑘=1

 

Pearson: 𝑝𝑖𝑗 =  
∑ (𝐺𝑖𝑘 −  𝐺�̅�)(𝐺𝑗𝑘 −  𝐺�̅�)𝑚

𝑘=1

√∑ (𝐺𝑖𝑘 − �̅�𝑖)2𝑚
𝑘=1 √∑ (𝐺𝑗𝑘 −  �̅�𝑗)2𝑚

𝑘=1

 

Methods to compare distances between clusters include single linkage (nearest 

neighbor joining), complete linkage (furthest neighbor joining), average linkage 

(average distance between all genes in two cluster pairs) and centroid linkage 
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(distance between two cluster centroids). Each calculation methods have 

associated pros and cons. While single and complete linkage methods are 

computationally simpler to implement, average and centroid linkage methods are 

less sensitive to noise and outliers16. Both Xue et al. and Yan et al. used 

hierarchical clustering with Euclidean distance calculation for their embryonic 

gene expression analysis. Yan et al., however, used complete linkage clustering, 

while Xue et al. used average linkage clustering (Figure 3). 

 

Figure 3. Hierarchical clustering of genes expressed during human preimplantation 

development. The left panel shows the result from Xue et al. and the right panel is a 

modified tree from Yan et al. for ease of comparison. 

Both findings suggest that genes activated at the 8-cell stage are closest related 

to those activated in morula. However, due to different choices in linkage methods, 

Xue et al. classified oocyte and zygote to be more similar, while Yan et al. found 

zygote and 2-cell blastomeres to cluster more closely. To resolve the discrepancy 

between the two, one can take the data from both groups and cluster them using 

the alternative methods. If Xue et al.’s data show the same clustering pattern as 

Yan et al.’s when complete linkage method is applied, one can conclude that the 

difference arise solely from data clustering. However, if the same result is obtained 

with the alternative clustering method, the difference resides in data collection and 

processing. Since both studies used similar cell collection and sequence 

alignment methods, it will be interesting to combine both datasets and perform a 

uniform clustering algorithm to test the robustness of cluster assignment to 

different experimental conditions. 

Alternative Clustering Methods and Validation 

Another commonly used clustering algorithm is centroid-based K-means 

clustering. This method first generate x partitions and assign each partition a 

random partition vector of size m (number of cells in our case of interest). Each 

gene vector is subsequently binned into different partitions based on their 

similarity to the partition vector. Once the genes are partitioned, each partition 

vector is recalculated based on the gene vectors it contains, and all genes are 

reassigned. The partition vector serves as an effective centroid for each cluster, 

and the process iterates until a solution converges. The K-means clustering 
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method is sensitive to noise and outliers because all genes are forced into 

partitions each round and outliers can greatly affect their corresponding partition 

vectors. Moreover, results can fluctuate greatly based on the initial choice of 

partition number, making this method less desirable. 

Various efforts have been made to improve the K-means clustering method, and 

one such modification is the Fuzzy C-Means (FCM) method16. Rather than force 

assigning each gene into a partition, FCM allows for weighted partial assignments. 

The partition vector is then calculated based on a weighted contribution of its gene 

members. Bandyopadhyay et al. took this idea a step further and proposed an 

improved two-step clustering algorithm18. They proposed that within datasets, 

there exist genes that can fall under multiple clusters, or have significant 

multi-class membership (SiMM). Their algorithm first identifies these SiMM points 

using a VGA-based method19, excludes them from the dataset, performs FCM 

algorithm on the remaining points, and reassign SiMM points back to the 

FCM-determined partitions. This approach avoids the confusion regarding initial 

SiMM point assignments and greatly increases the clustering robustness to noise 

and outliers. Evidence suggests that a few groups of genes remain constitutively 

expressed throughout the embryonic preimplantation development12. This can 

make cluster assignments for these genes more difficult and the two-step SiMM 

clustering algorithm can offer an ideal solution to this problem. 

In both studies, the authors validated their clustering results using gene ontology 

(GO) terms. Statistics are calculated to quantify the probably of associating a 

specific GO term to a cluster. Although this validation method gives biological 

relevance to the data, it relies on existing gene annotation in the databases20. An 

alternative method proposed by Yeung et al. bypasses this shortcoming21. This 

method determines a scalar quantity called the Figure of Merit (FOM) which 

measures the predictive power of a given clustering algorithm. First, one data 

point is removed from the data set, and the remaining set is clustered by any 

method of choice. Second, the excluded data point is placed back into a group 

based on its expression similarities to the clustered genes. One then calculates 

the root mean square deviation, or the FOM, of the excluded gene with respect to 

its cluster mean. This process iterates until all data points are excluded once, and 

the sum of FOMs is the score for the clustering algorithm of choice. The smaller 

the cumulative FOM is, the higher the predictive power a clustering algorithm has. 

Despite the lack of biological information, the FOM calculation enables direct and 

quantitative comparison between different clustering methods. This can serve as a 

powerful complementary validation method to the GO term assignments. 

B. Data Visualization: Principal-Component Analysis 

Clustering techniques can introduce artifacts and biases to data organization 

depending on the method of choice. To reveal the underlying structures in a 

multidimensional dataset without bias, the method of principal-component 

analysis (PCA) is often used22. In an experiment where m cells are sequenced 

and n total genes are expressed, the dataset has m points, each with n 

dimensions. For n > 3, the data become difficult to visualize. The goal of PCA is to 
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reduce the dataset down to only two or three dimensions and observe the 

underlying patterns. Briefly, each data point is represented by an eigenvalue 

(magnitude) and an eigenvector (direction). Then, the data points are projected 

onto an axis to give the largest variance along the line. This axis is known as the 

first principal component. To determine the subsequent principal components, the 

data are projected onto a different axis that gives the next largest variance. Each 

principal component axes must be orthogonal to each other to maximize sampling 

across the data space. For visualization purposes, data points are often 

represented by 2D or 3D plots as shown in Fig. 4. 

    
Figure 4. Principal-component analysis of transcriptomes from single blastomeres. 

Left panel shows results from Xue et al. and right panel shows results from Yan et al. 

Through both hierarchical clustering and principal-component analysis, the 

authors observed that individual cells from different stages of preimplantation 

clustered separately by genetic profiling. This suggests that each developmental 

stage can be characterized by its unique set of transcriptome. 

Findings using Single-Cell RNA-seq 

In previous human embryo whole genome analyses, two prominent transcriptome 

dynamics were observed: the gradual degradation of maternal mRNA and the 

wave-like activation of zygotic genes. Specifically, the first wave of zygotic gene 

activation (ZGA) occurs at the 4-cell to 8-cell transition, and the associated gene 

functions are transcription and translation. A second wave of ZGA peaks at the 

morula stage as the embryo compacts. Pluripotency genes are highly upregulated at 

this time. Via microarray analysis, Vassena et al. identified 255 genes associated with 

ZGA23. Single-cell sequencing analyses also capture these features as shown by the 

heat maps (Fig. 5). Using a more stringent RPKM threshold, Xue et al. identified 149 

differentially expressed genes between oocytes and zygotes, 70 of which were 

downregulated after fertilization and 79 were upregulated. Approximately half of the 

upregulated genes were highly expressed in 2-cell and 4-cell stages but not in 8-cell 

stage, while the other half were further upregulated after the 8-cell stage. They further 

noted that the first set of upregulated genes associate with transcription regulation 

and the second with RNA processing and splicing. Similarly, Yan et al. reported an 

approximate 1:1 ratio for upregulated versus downregulated genes between the 4-cell 

and 8-cell stages (2495 up vs. 2675 down). The genes highly expressed at 8-cell 
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stage are enriched for RNA metabolism and translation functions. These findings 

demonstrated that ZGA phenomena observed via traditional genomic profiling 

techniques can be reliably detected using single-cell RNA sequencing. 

 

Figure 5. Heat maps indicating gene expressions across different preimplantation 

stages. A Xue et al. identified 149 differentially expressed genes between oocyte and 

zygote, and 7313 total genes across 7 stages of preimplantation development. Figure 

modified to ease comparison. B Yan et al. detected a total of 11,066 genes in sampled 

oocytes and blastomeres, 2495 of which were highly upregulated during ZGA. Genes 

activated at early preimplantation development are associated with cell cycle and cell 

division. After the 8-cell stage, blastomeres express RNA processing and metabolic genes. 

Xue et al. further performed a weighted gene co-expression network analysis 

(WGCNA) to closer examine the links between each gene clusters. Their data consist 

of 25 coexpression modules and 9 of which were highly stage specific. The group 

then identified 491 intramodular hub genes across all stage-specific modules. When 

compared with the mouse dataset, Xue et al. found that both the stage-specific 

modules and the hub genes are highly conserved. They speculated that these 

modules act as the core gene networks governing each developmental stage, and the 

hub genes are key players in preimplantation stage transition. Fig. 6A highlighted 

some of the key hub genes found through WGCNA. 

The advantage of single-cell sequencing over traditional genomic analysis lies in its 

ability to discern heterogeneity within a population at single-base resolution. Xue et al. 

took advantage of this feature and analyzed the parental genome contributions via 

single-nucleotide polymorphism analysis (scheme showed in Fig. 6B). They 

discovered that despite the gradual maternal mRNA degradation throughout the 

embryonic development, more than 50% of the genes activated at the 8-cell stage still 

exhibited monoallelic maternal expression patterns (Fig. 6C). One such example was 

the ASB6 locus. In contrast, maternally activated cell-cycle regulator CDCA2 during 

2-cell and 4-cell stages transitioned to a transient paternal activation at the 8-cell 
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stage. The authors also identified several SNPs in CDCA2 that can result in missense 

variants of the gene. They argued that single-cell sequencing combined with SNP 

analysis can be a powerful tool to screen for deleterious variants in embryos.  

 

Figure 6. WGCNA and SNP analyses on single-cell RNA sequenced human embryos7. 

A A Network connecting the coexpression modules and the hub genes. Highly connective 

hub genes are highlighted by red dots. Transcription regulators are circled in purple. Genes 

shaded in blue and orange were independently validated. B Schematics of allelic 

expression assignment based on SNP patterns. C Pie charts summarizing the distribution of 

assigned genes exhibiting single-nucleotide variants.  

RNA modification is a key signature of the 8-cell stage as identified previously by 

gene annotation. Yan et al. followed this lead and analyzed the transcriptome for 

alterative splice variants, long noncoding RNAs (lncRNA) and novel RNA transcripts. 

They isolated 2372 distinct genes with more than 2 isoforms, and 206 of which were 

present in all stages of preimplantation development. They found that in 34% of the 

alternatively spliced genes, two or more isoforms were equally expressed; while in 

the remaining genes, one major isoform dominated. Importantly, the isoforms can be 

differentially expressed at different stages. For example, the authors found that 

FOXP1 exon 18b was enriched in the blastocyst stage but not in the 2-cell or 4-cell 

stages. This isoform targets a different DNA sequence and is required for pluripotency. 

For the lncRNA analysis, Yan et al. detected 18,383 total unique lncRNAs. On 

average, each blastomere contained ~3000 lncRNAs, which accounted for 5% of the 

transcriptome. When the authors analyzed these noncoding RNAs more closely, they 

found that in certain populations, lncRNA had copy numbers up to 40% of those for 

the coding transcript copy numbers. They also found that lncRNA expression was 

stage-specific (Fig. 7A), suggesting a regulatory role for lncRNA in preimplantation 

development24. Lastly, through this transcriptome analysis, the group identified 253 

possible novel protein coding genes and 2733 lncRNAs. 40% of these novel lncRNAs 

were conserved amongst all blastomeres from the same stage, again emphasizing 

the potential regulatory function of lncRNAs. 

Microarray and whole-genome sequencing analyses on human embryos were first 

aimed towards the discovery of pluripotency-specifying genes. Yan et al. further 

sequenced two different stages of human embryonic stem cells (hESCs, passage 0 

and passage 10) and compared them with the blastocyst inner cell mass (ICM), 

where hESCs are derived from. Consistent with previous findings, ICM cells clustered 



BIOC 218 – WINTER 2014  Eva Huang 

10 

 

independently from hESCs (Fig. 7B). 975 genes were upregulated and 523 genes 

were downregulated during the ICM to hESC transition. Notably, many of the 

pluripotency associated genes including SOX2, TDGF1, NODAL and LEFTY1/2 were 

upregulated by more than 5 folds in comparison to the expressions in ICM, while 

others like OCT4, NANOG, KLF4 and STELLA were significantly downregulated. The 

authors detected no significant differences in gene expressions between P0 and P10 

hESCs. 138 known and 37 novel long noncoding RNAs were identified unique to ICM 

and 2286 known and 194 novel lncRNAs were found unique to hESCs. Further 

comparison between hESCs and cells from the primitive endoderm (first stage after 

blastocyst implantation) showed a large degree of dissimilarity. Together, Yan et al.’s 

results support the notion that ICM cells and their derivative hESCs are two distinct 

populations of pluripotent cells. The marked difference in lncRNA level provides a 

new avenue to probe its regulatory role, which may be a crucial control for the 

differential gene expressions in the two populations. 

 

Summary and Future Prospects 

In summary, single-cell RNA sequencing serves as a powerful tool to study the 

human preimplantation development. Studies by Xue et al. and Yan et al. 

independently demonstrated that each developmental stage can be characterized by 

a unique set of transcriptomes. Both groups contributed a comprehensive list of 

genes associated with major events in development such as the maternal mRNA 

degradation and the zygotic gene activation. Xue et al. took advantage of the single- 

base resolution in single-cell RNA-seq and investigated the SNP in each blastomere. 

Yan et al. leveraged the knowledge from gene annotation and further explored RNA 

alternative splicing and lncRNA expression throughout the preimplantation process. 

In broader context, Xue et al. constructed a network linking all the stage-specific gene 

modules and identified several hub genes that may be central to the transition 

between stages. Yan et al. compared gene expressions of cells from the ICM, hESCs 

and primitive endoderm and found that three cell types are distinct populations of its 

own. The stage-specific and population-specific lncRNA expression may be the key to 

regulate differential gene expression across the human preimplantation stages. 

Figure 7. Selected results from Yan et 

al.’s study on embryo and hESC 

genomic sequencing. A Hierarchically 

clustered lncRNA expression during 

human preimplantation development. 

Many lncRNA clusters were expressed in 

a stage-specific manner. B Hierarchical 

clustering of genes expressed in late 

blastocyst inner cell mass (epiblast, EPI) 

and in human embryonic stem cells 

(hESC). Epiblasts are shaded in red, 

newly generated hESC (passage 0, P0) 

in yellow, and later stage hESC 

(passage 10, P10) in blue. 
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From a technique standpoint, both studies utilized similar sequencing and analysis 

methods. cDNA libraries are constructed using PCR amplification, followed by 

Illumina sequencing and BWA alignment and genome mapping. Hierarchical 

clustering algorithm and principal-component analysis were used to visualize the data, 

and gene annotations were used to validate the clustering results. Although 

hierarchical clustering is easy to implement and has revealed important biological 

insights, this algorithm may not be the best fit to describe embryonic preimplantation 

gene expressions. Genes constitutively expressed throughout the developmental 

process can be difficult to cluster into any particular stage. With a two-step significant 

multi-class membership (SiMM) algorithm, genes that have the characteristics of 

multiple clusters can be more accurately placed. In addition to GO term validation, the 

Figure of Merit index can be used to estimate and compare the predictive power of 

various clustering methods. The review by Ning et al. provides additional 

improvement suggestions for single-cell sequencing technique and analysis25. 

The insights gained from Xue et al. and Yan et al.’s analyses provide multiple 

directions forward. One can use the SNP analysis to trace the paternal gene 

contribution to an embryo, or to construct a list of deleterious variants to incorporate 

into future embryo diagnosis. The list of hub genes provide good leads for proteomic 

studies in human embryos. These genes may translate into key regulators that gate 

the transition from one stage to another. Systematic knockout experiments will reveal 

their roles in early development. The stage-specific and population-specific 

expression of long noncoding RNAs is yet another finding that stands in need for 

further investigation. lncRNAs can exert transcriptional, post-transcriptional, as well 

as epigenetic regulation on gene expressions. Uncovering their function in 

blastomeres and hESCs will be a significant step forward for developmental and stem 

cell biology.  

In conclusion, single-cell RNA sequencing technique is well-suited for human 

preimplantation development studies. It accommodates the scarcity of human embryo 

samples while producing reliable results in agreement with traditional microarray and 

whole-genome studies. Moreover, single-cell RNA-seq detects heterogeneity within a 

cell population at a single-nucleotide level. This degree of sensitivity has allowed 

many novel studies that have previously been difficult, if at all possible to proceed. 

Efforts have been put to combine single-cell RNA-seq with other techniques including 

live cell imaging and fluorescent protein reporters13. These hybrid methods, together 

with rapidly improving sequencing analysis algorithms, will serve as a promising 

next-generation analytical platform to study the dynamic gene expression network in 

any complex biological systems. 
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